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LONG-TERM GOALS
The overall, long-term objective is to develop and implement the methodology to detect,

classify, and identify in near-real time mines and obstacles in cluttered acoustic images.

OBJECTIVES
• Improve preprocessing filters to reduce clutter

• Incorporate size and shape information in matched filters (to reduce false alarms)

• Design a classifier combining features from higher-order spectra with those from the
strength (eg, size of object) and geometry (shape) of the matched filter output

APPROACH
Our pattern recognition procedure includes preprocessing to remove background noise,

matched filtering to separate the image into subsections with mine-like targets, and further
classification using higher-order spectral based features. False alarms are reduced by analyzing image
features with a three-stage classification scheme.

A set of features are obtained from image subsections passed through a zero-mean matched FIR
filter that corresponds to an approximate shape for the target.  If a mine is present, the output of the
matched filter contains a large positive peak. In contrast, in the absence of a mine (ie, noise only) the
output of the matched filter contains low amplitude peaks and valleys. Currently, we are testing
matched filters consisting of 9 X 9 and 12 X 12 kernels that are designed to detect a horizontal edge
between high values arising from reflection at the mine and low values in its shadow.  A minimum
distance classifier is used to detect if the distance between the high, low, and maximum peak-to-peak
values in the filter output fall within a specified (by training data) threshold for a mine.

Additional features of the matched filter output are formed from the sizes of the positive and
negative peak regions, the horizontal and vertical distances between the maximum and minimum
values, and the relative amount of the image with concentrated regions of high or low values
(determined by an adaptive threshold) (called the Euler number). These features are classified by
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comparison with threshold values for mines and for noise obtained during training. The relative weight
of each feature can be adjusted, and a cumulative threshold for detection established.

A large amount of the information in an image is contained in the phases of its Fourier
components. Consequently, the relationships between Fourier phases can be used to form additional
features useful for identifying objects within the image. We are investigating features derived from
integrals of higher-order spectra of images. Advantages include:

• Retention of both Fourier amplitude and phase information
• Invariance to translation, rotation, and amplification  of the object within the image
• Immunity to Gaussian noise
The bispectrum ),( 21 ffB and trispectrum  ),,( 321 fffT  of a one-dimensional process may be

defined as
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where )( fX is the complex Fourier coefficient at frequency f .  Features for pattern recognition are
obtained from the phase of the integral of each higher-order spectrum along a radial line in bi- (eg,
( 21, ff )) or tri- ( 321 ,, fff ) frequency space. The integrated phase is invariant to translation, rotation,

DC shifting, and amplification. Different features are obtained for different radial lines.
To extend the feature extraction to two-dimensional processes, such as images, the 2-D Fourier

transform is mapped onto a polar grid using the Radon transform (parallel beam projections). The
Fourier transform magnitude along a radial line forms a sequence from which higher-order spectral
invariants are computed, yielding the set of invariant features. The procedure is repeated for different
angles. The higher-order spectral features can be classified using K-nearest neighbors, a learning
vector quantizer, or an artificial neural network.

WORK COMPLETED
The higher-order spectral feature extraction algorithm and software have been extended to

include trispectral, as well as bispectral features.  Features from the matched filter output and from
higher-order spectra-based invariants were generated for the entire Sonar 3 database  (30 images for
training, 30 images for testing).  An optimal set of higher-order spectra-based features from the mines
in the training set was selected using principal component analysis to form linear combinations of
features with minimal correlation (eg, with a diagonal covariance matrix).  The 136 features (8 from
the matched filter output and 64 each from linear combinations of bispectral- and trispectral-based
invariants) were sorted from highest to lowest quality Q, where Q is the separation between the
average value of the feature for a mine-containing region of the image from the value for a region
without a mine (normalized by the sum of the standard deviations of the features for regions with and
without mines). Thus, although features with high Q are best for detecting the presence of a mine,
including additional features with lower Q provides more information.

A K-nearest neighbor classifier was implemented and used to classify the 30 test images in
Sonar 3 after training with the 30 training images. Tests with Q > 0.15, 0.10, 0.05, and 0.025 (eg,
increasing numbers of features were included) were performed. The number of nearest neighbors
ranged from 3 to 27, in steps of 2, and accuracy and false alarm percentages were calculated in each
case.

The output from all three classifiers (minimum distance, threshold, and K-nearest neighbor) has
been combined. Software has been developed that allows each image subsection to be filtered and



features to be generated. The features are investigated with each classifier sequentially to test if a
detection threshold is exceeded.  If no mine is detected, the next (more complex) classifier is invoked.
This procedure has been applied to the entire set of images in the Sonar 3 database. The software was
rewritten in a modular form, allowing different filters, features, and classifiers to be included.

RESULTS
Initial tests of fully automated (but without optimization) software with the set of filters,

features, and classification schemes described above detected about 75% of the mines in the Sonar3
database, with about 10% false alarms. Operator interaction results in an improvement to about 85%
accuracy.

As Q decreases from 0.15 to 0.025, the number of features included in the classification
increases from 25 to 108 (of a total of 136) because more features pass the lower thresholds.
Accuracies and false alarms as a function of Q are shown in Figure 1 for an 11-nearest neighbor
classification. The results are not significantly different for K between about 5 and 27, except there are
many more false alarms for low values of K when Q is large (eg, when there are relatively few
features).

The optimal number of features for this database is about 80, indicating that the higher-order
based spectral features are contributing to classification accuracy because only 8 of the features are not
based on bispectra or trispectra.  Trispectral-based features alone do not provide better accuracy than
bispectral-based features, but combining both types of features improves classification accuracy.
Including more features does not improve the results greatly (eg, Figure 1), and thus near-optimal
classification may be achieved with fewer features to reduce computations.

IMPACT/APPLICATIONS
Preliminary results of this study suggest higher-order spectra-based features can be used to

identify and classify patterns in noisy, cluttered images.

TRANSITIONS
No transitions took place in FY98.

RELATED PROJECTS
A proposal for complimentary investigations was submitted for an Australian Research Council

Large Grant for funding in 1997 (“Detection, Classification, and Identification of Embedded Objects
Using Projections and Higher-Order Spectra with Application to Classification of Viruses”). It has
been revised and will be resubmitted for funding in 1999. Discussions with Dr. C. A. Butman (Woods
Hole Oceanographic Institution) suggest the classification techniques we are developing may also be
useful for detecting and counting larvae in images obtained from plankton pumps (eg, used during the
CoOP and Duck94 field experiments).



Figure 1: Percent accuracy (solid curve through closed symbols, left ordinate) and false alarms (dashed
curve through open symbols, right ordinate) versus quality Q (defined in the text).  The number
of features used is 108, 82, 53, and 25 for Q > 0.025, 0.050, 0.10, and 0.15, respectively.  Eight
of the features are based on the output of a matched filter, and the rest are from higher-order
spectra-based invariants. Mines were detected from the features with an 11-nearest neighbor
classifier. The preliminary results shown here were obtained from fully automated software.
Operator interaction increases accuracy to more than 85%.
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